Section 3.3: Zeros of Polynomial Functions

Video 1

1) Determine whether $x+4$ is a factor of the polynomial.
a) $f(x)=2 x^{4}+8 x^{3}-7 x^{2}-19 x+36$
b) $f(x)=-3 x^{3}-7 x^{2}+8 x-55$
2) Factor $f(x)=3 x^{3}+4 x^{2}-148 x+96$, given that 6 is a zero.

Video 2

3) For the polynomial function $f(x)=2 x^{3}+11 x^{2}+10 x-8$, list all possible rational roots.

Then find all rational zeros and factor $f(x)$ into linear functions.
4) For the polynomial function $f(x)=6 x^{4}+17 x^{3}-14 x^{2}-27 x+18$, list all possible rational roots. Then find all rational zeros and factor $f(x)$ into linear factors.

Video 3

5) Find a third-degree polynomial $f(x)$ with real coefficients that has zeros of 2,5 , and -4 such that $f(3)=10$.
6) Find a third-degree polynomial $f(x)$ with real coefficients for which -3 is a zero of multiplicity 2,8 is also a zero, and $f(1)=-6$.

Video 4

Conjugate Zeros Theorem
If $f(x)$ is a polynomial function with real coefficients, and if $z=a+b i$ is a zero, then the conjugate of $z, \bar{z}=a-b i$ is also a zero.
7) Find all zeros of $f(x)=2 x^{4}-15 x^{3}+18 x^{2}+90 x-200$, given that $3+i$ is a zero.

Video 5

Descartes' Rule of Signs

If $f(x)$ is a polynomial function with real coefficients and a nonzero constant term,
a) The number of positive real zeros of f either equals the number of variations in sign occurring in the coefficients of $f(x)$, or is less than that by a positive even integer.
b) The number of negative real zeros of f either equals the number of variations in sign occurring in the coefficients of $f(-x)$, or is less than that by a positive even integer.
8) Determine the possible numbers of positive, negative, and nonreal complex zeros of $f(x)=-3 x^{4}+15 x^{3}-50 x+17$.
9) Determine the possible numbers of positive, negative, and nonreal complex zeros of $f(x)=x^{4}-18 x^{3}+25 x^{2}-35 x+14$.

